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2-pentylcyclopentaneacetate. A model procedure for the preparation
of chiral jasmonoids and prostaglandins
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Abstract:  An expeditious procedure for the enantiospecific preparation of the rrans-2,3-
disubstituted cyclopentanone moiety starting from natural 2-norbornanones is described.
New reaction conditions for the reaction of sterically hindered ketones with triflic
anhydride, as well as for the S-O cleavage of bridgehead triflates have been developed.
(© 1997 Elsevier Science Ltd. All rights reserved.

2,3-Disubstituted cyclopentanones are an important class of organic compounds widely distributed
in Nature.! Prostaglandins,? dicranenones? and jasmonoids* are examples of natural products showing
this standard unit. This fact has led to numerous attempts of homochiral synthesis of trans-2,3-
disubstituted cyclopentanones in the last few years.’

In preliminary work we have shown that the cleavage of C1—C; bond in 2-norbornanones is a
convenient method for the preparation of homochiral 3-substituted cyclopentanonesﬁ We report in this
communication a new and easy access to homochiral trans-2,3-disubstituted cyclopentanones from
naturally occurring 2-norbornanones, which is exemplified by the preparation of the jasmonoid methyl
(1R,25)-o,x-dimethyl-3-oxo0-2-pentylcyclopentaneacetate 8 (Scheme 1).

Treatment of (+)-(1R)-camphor 1 with lithium N,N-diisopropylamide (LDA) in tetrahydrofuran
(THF) at 0°C (0.5 h) gives the corresponding enolate, whose reaction with n-pentyl iodide (24 h)
yields 56% of a mixture of the endo- and exo-alkylation products 2, that were separated by column
chromatography (silica gel, n-pentane).7 Due to steric hindrance produced by the pentyl group, the
thermodynamically controlled product endo-2 predominates over the less stable exo-2 isomer in a
ratio of 95:5.8

We have shown that the reaction of 2-norbornanones with triflic anhydride (Tf;0) takes place under
very mild conditions (CH>Cl,, room to:mperalure).9 However, in the case of the sterically hindered
endo-2, more vigorous reaction conditions were necessary. Good results were obtained by carrying
out the reaction with Tf20 and N,N-diisobutyl-2,4-dimethyl-3-pentylamine (DIMPA) in the absence
of solvent, under reflux (1 h). A mixture of the bridgehead triflates 310 and 4 (3/4=83/17), whose
separation was not successful by column chromatography, was isolated as product (95%).

As we reported earlier, the reaction of bridgehead triflates with LiAlH4 affords the corresponding
alcohols in good yields.!! Strikingly, under the same conditions, S—O bond cleavage of 3 and 4 was
accompanied by formation of the hydrocarbon 9'2 in a yield up to 40% depending on the solvent
(Scheme 1). This by-product 9 results from the lithium catalyzed solvolysis'? of triflates 3 and 4,
which is favoured by the alkyl group at C7.1% The solvolysis reaction was avoided using methyl
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lithium as S—O cleavage reagent instead of LAH.!3 In this case, a mixture of the alcohols 516 and 6
(86%, 5/6=83/17), whose separation was not needed, was isolated. The formation of the jasmonoid
7'7 is accomplished by oxidative cleavage of alcohol 5 with catalytic amounts of ruthenium trichloride
along with sodium periodate as cooxidant.'® In this process, alcohol 6 does not suffer C;—C» bond
cleavage, and therefore acid compound 7 can be isolated from the reaction media by extraction with
10% NaOH (70% yield from §). If desired, other intermediate oxidation products of 5 can be obtained
following diverse reaction procedures described in the literature. 6519

Finally, the reaction of 7 with methyl sulphate in basic media in refluxing dioxane gives the
corresponding methyl ester 820 in excellent yield (95%).

In summary, alkyl substituted naturally occurring chiral 2-norbornanones can be used for the
preparation of the 2,3-disubstituted cyclopentanone moiety, as exemplified by the preparation of the
ester 8. Some modifications of the reaction procedures, described in earlier works, are necessary when
the starting 2-norbornanone is highly substituted.®
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